A STEENROD-MILNOR ACTION ORDERING ON DICKSON
INVARIANTS

NONDAS E. KECHAGIAS

ABSTRACT. Let f: (BE(z1,...,2x) @ Ply1, ...,yk]}GL" — (B(z1,...,zk) ® Ply1, ..., yz]) T E*
be a degree preserving Steenrod module map such that f is an isomorphism on

degree 2pF~1(p~1). Using a particular ordering depending on the dual Milnor

basis we show that f is an upper triangular map, hence an isomorphism.

1. INTRODUCTION

Motivated by topological questions regarding the cohomology of an infinite (fi-
nite) loop space and influenced by the work of Campbell, Cohen, Peterson and
Selick in [1] and [2] we study the problem under which conditions is a Steenrod
module map between the full rings of invariants of GL(k,Z/pZ) an isomorphism.
In a sequel we study the same problem between certain quotients of the full ring
of invariants [4]. It turns out that although the same result holds its proof is more
technical.

It is known that given a monomial d” there exists a unique p-th power Steenrod
operation PP" of smallest degree such that PP"d™ # 0. Thus there exists a set

consisting of p-th powers of generators df: such that d{z \d* and t; +i—1 = m.
It is obvious that PP ... PP"™d" £ 0. We are interested in finding the longest such
sequence of Steenrod operations. Of course it depends on m and i. The required
sequence shares the property that PP prTgn g also a monomial according
to proposition 1 e). We call such a sequence a Steenrod-Milnor action on d=.
Now we iterate this procedure on the monomial PP*...PP™ 4" until the resulting
monomial is dfu for the smallest p9.

Theorem 5 There ezists a sequence of Steenrod-Milnor operations PT such that
Pram =y, Here \ € (Z/pZ)".

Next, given two monomials d” and d* we define an ordgring according to their
first different Steenrod-Milnor actions PP*“ .. PP™ and Ppt"“f) PP We call this

action a Steenrod-Milnor action ordering. Using this action we prove the following
Theorem:

Theorem 6 Let f : (E(z1, ..., zk) ® Ply1, ..., y)) ™ — (E(zy, s T) ® Plyy, ooy yi]) O 2F

be a Steenrod module map which preserves the degree such that fldrp—1) = Adg k1
for A € (Z/pZ)*. Then f is a lower triangular map with respect to S-M ordering
and hence an isomorphism.
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A consequence of this result is the well known Theorem of Campbell, Peterson
and Selick:

Theorem [1]Let f: Q5S> — QS be an H-map which induces an isomor-
phism on Hy,_3(Q§°5°°; Z/pZ). If p > 2 suppose in addition that f is a loop map
or that

fa(dz,0)™ = Mdz,0)*

for some A € (Z/pZ)*. Then f;) is a homotopy equivalence. Here (da)* is the
hom-dual of the top degree Dickson generator in Ds.

2. A STEENROD-MILNOR ACTION ORDERING ON DICKSON INVARIANTS

We shall recall some well known Theorems concerning the action of the Steenrod
algebra on Dickson algebra generators. Let us also recall the full ring of invariants
of GL(k,Z/pZ).

Let E} stand for E(z1,...,zx) and Si for Plyi,...,yx]. Here |z;| =1 and |y;| = 2
with Bz; = y;.

Theorem 1. The Dickson algebra SpCL* is a polynomial algebra on {dk,0; -1l k—1}-

The Dickson algebra generators are defined bellow.

Theorem 2. [5]The algebra (Ej, ® )L+ is a tensor product between the polyno-
mial algebra Dy and the Z/pZ-module spanned by the set of elements consisting of
the following monomials:

My, s L2725 0<1<k-1, and0<s; <--- <5< k—1.

Here | = 0 implies that My = z1...zi. Its algebra structure is determined by the
following relations:
) (Migsy,..s s LE2)2 =0 for0<I<k—1,and0<s; < - <5 < k—1.

k=l
b) Mussy,..,s LE ity = (~)® DD M o IR
B i 30, k—st,.,k—
Here0<I<k-1,and0<s1<--- <5<k —1.
The elements above have been defined by Mui in [5] as follows:
T e T
: : (51 Ig
M 1 x % | Lk’iL B yi yh
kis1,..,8 = (& —1D)! y,;r‘l x o y;f 1 kg = I ki = . .
- a K k
. : A
5) sp
i vk

Here there are k — [ rows of z;’s and the s;-th’s powers are completing the rest of
the first determinant, where 0 < s; < --- < 5; < k—1. The row yfyi is omitted
in the second determinant. Ly := Ly j.

|Miss,...ose| =k =1+ 2(p™ +---+p*) and |Lgi| = 2(1 +--- + p* - p).
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. Ori-1, fj=1i-1
Theorem 3. [3|1) P” (d;) = { —drdrp—y, fj=k—1
0, otherwise
Mk;sl,...,st+1,...,s; -indz;' J=5t, ser1F st +1
(0 —2)My;sy,.. L} “drp—1;i=k—-1,81# k-1

2) ij (Mk;sl,...,sz Li—z) = "L£_2(Mk;51,---,szdk=k-1 + ” Z }(_l)th;Sh---,S(:,---,szdk.é‘:);
S 81 5---,8]
=k, sp=kei
0,’j =S:—1 = St-1, l—1=st,k

Lemma 1. PP (d,’;z) = —d’,;,z. -1 Ft=1+k-1 -

0, otherwise

k=1
Theorem 4. [3]1) Let g > 0. Ifq = > arp*tt such that p—1> a; > apq >
a1 =0. Then '
1 ! k=1 7 g, E s =ttt}
Py = o (2 e

T

Otherwise, P'i’a,”,,i_jU =0.

2)Letq= Y ap't' > 0 such thatp—1>a; > as_1 > a; >0 and a; +1 >

s
Gi—1 2 ap 2 a1 = as—1 = 0. Then

k=1 . i—1 =1
qug’:i e d:;zi(._l)ak—l ( H ( ai )) (a: + 1) (H ( ag )) H dilga'!—a’t—l)
' ’ it1 \@t—1 Gi1 o Ny Lk,

Here as—y = 0. Otherwise, quf,o =0.

Remark 1. Please note that the case a; = 0 and a;_1 = 1 is allowed in the Theorem
above.

We shall apply formulas above on a Dickson algebra monomial starting with the
lower non-zero p-th power.

Definition 1. Let n = (ng,...,nx—1) be a sequence of non-negative integers and
1(3)

d™ = []dy; a monomial in the Dickson algebra. Let n; = 3 a;;p™+* be the n;’s
i t=0

p-adic expansion with [Ja;s # 0. a) Let M := {mg, m, s My(my | My < M1} =

{not+k—1,ms+i-1]0<t<I0),1<i<k-1and0<s<I()}.

b) Let I(my,n) := (i1,...,%r) such that m; =noy +k—1=mn; ¢ +i.—1 and

; . J maxI(mj,n), if 0 ¢ I(mj,n)

Imim) =\ k, if 0 € I(my,n) '

¢) Let PY(™) stand for the Steenrod operation PP™ PP™ "% PP Let us
call P'(™D o Steenrod-Milnor action of type (m, ).
Proposition 1. a) Pr(mmk)df:{:‘ == ——di{’;o. Here mop=mng+k—1.

ng+1

b) Primok)  primok) — _ """ Here mg =ng+k—1.

r—1
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¢) Let d* € Dy, and mg € M, then
PP = X g pdrd T A PR
0<i~€I(mo,d™) ’ '
d) Let d* € Dy, and mg € M, then

"ir(mg,n) 0 —p H(mgmn)®
Pr(mosizimg,m)gn — “inmo.n)’of’f:‘fi,ﬂ dk,ir(mo,n) » 40 ¢ I(mo,d")
—agod™dy 5, if 0 € I(mg,d™)
e) Let d" € Dy and my € M, then PL(moiiztmom) | Pr(mosiztmo.m)gn —

'

%1 (mg,n)©
*ir(mg,n)®
or

ng 0
I({mg,n)’ R
© %1 (mg,n) 0P

@i op
. n I(mg.n)’
(all(mo,n) :O) !d dk,o k. '1_[(,.”_0 n)

Primok)  primok) gn — (_qyp—1-ao, D_{%dudﬁno oF1 k—c{z}o ,0p"0:0

p—1l-ap,0

Proof. a) By lemma 1 P?' JPO_O ft#l+k— la.ndPJ’PczIIJ =0,ift#1l+k—-1
or [ +1i—1. Now the statement follows using Cartan formula

b) is an application of a).

c) Since mo = max M , Theorem 3 and Cartan formula implies the statement.

d) Letmg=ng+k-1=n,-+i—1forz’>0 By lemma 1
prPTOT ppToTHE | ppTe d{: = prT b0 = PP P o = 0. Now the statement
is an application of c¢).

e) This is a repeated application of d). Two main cases should be considered
depending on ¢7(mm,,n). Moreover, the number of times the S-M operation has to be
applied depends on a;, (mo.my,0- Ve describe the first step in details. The next steps
I(mg,n)° _p“"f(mo,n)"’. Let

follow the same pattern. Let us compare d" and d"dg bt omom)
I(mg,n

M and M’ be the corresponding sets defined in definition 1.

Let i1(mo,n) > 0, then i (gm0 T k—1>mo. If Qifimgimys0 = 1 and I(mg,n) =
{i1(mo,m) }» then m = min{mq,ns; . .04k — 1} > mo. Otherwise, mf = mo.

Let i3, (,,, .0 = 0 and ag,0 < p— 1, then mg = mg. Otherwise, my = mo + 1. Now
the statement follows. [§

Let us comment on the statement of last Proposition. Let d* be a monomial
and d™ the resulting monomial as in the statement of e) above. If for each index
ir € I(mg,n) a suitable Steenrod-Milnor operation is defined, then the smallest
p-th component of exponents of di;’s are reduced and that of dj¢’s is increased
respectively.

Corollary 1. Let d" € Dy, and ir, € I{mo,n) = {iry, .yt }- @) If0 < i, , then

(o]

( @;p,0p " t:0)
I(mo,ir, ) pL(mo,ir T(mo,ir, ) Jn _ 0<ir€I(mg,n) —a,,. op™ir:0
plimoic, ) p 2, Primoin)dn = \dnd, S [1 ds
ai.. o ai.. o ai ir€l(mo,n)
irg s irg 1,0
b) If 0 =i, then
) (rootiy 2 @i ,0p "t 0) -
PI“(mo yirg) Pr(mo,zr,)PF(mg,k)dn = \d*d 0<ir&l(mg,n) H d- 80P e
k.0 k,i
R R — ) : 2
ir€llmom)

Gip, ,0 @i, ,0 P—l=ape

Here A € (Z/pZ)*.

Proof. This is an application of Proposition 1 e). §
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Let d® be a monomial and d* the resulting monomial as in last corollary. Let
M and M’ be as in definition 1, then mqg < mj.

Definition 2. Let m be a positive integer, I = (21,.-,%1) a strictly increasing se-
quence of integers between 0 and k — 1, and J = (a1,...,a1) a sequence of integers

between 0 and p — 1. We deﬁng primI,J ). the following S-M operation:
@) §f iy =0, Primdd) = phimda)  plim.a) plim.k)

ag ; (0»1 p—l—a;
: T(m,I,J) — pT(m,i1 T (m,i;)
b) If0 < iy, P P P .
al ay

Theorem 5. There ezists a sequence of Steenrod-Milnor operations PT such that
I(n
PTd™ = A, . Here \ € (Z/pZ)*.

Proof. We shall describe an algorithm which constructs the required sequence. This
algorithm depends heavily on last corollary.

Step 0. Let PT = PO,

Step 1. Given d” define I(mg,n), J(mo,n) = (as, 0, ..., s, 0) and ir(I(mo,n)) 8S
in Definition 1 b). Define PT := pI'(mo,l,.J) pT'

(. = @ip0p 00
Step 2. Define d := Adnd,’S*<imom : [ B
P & Delne a7 = AdTay o i or
i~€I(mo,n)
(pk0.0+1+0<_ E);( )aihepﬂihc‘) in,0
ir ™mg,n —Qj,. 0D T .
Adrdy d i given by corollary above.

i€l (mg,'n.)
If n; > 0 for some ¢ > 0 or ny # p*™ for some positive integer I(n), then proceed
to step 1. Otherwise, the required sequence is PT. J

Lemma 2. Let d* and d* be monomials and {M, I(mg,n), J(mg,n)},

{M’, I(mg,n'), J(my,n)} their corresponding sequences.

a)’Ifmg = myg, I(mo,n) = I'(mg,n’), and J(mo,n) = J(mg,n’), then PT(mo.1:7)(gn_
Y =0,

b) If mg = my, I(mo,n) = I'(mg,n’), and 3tg > 0 such that Qiyy,0 > agto,o, then
PF(mD,I,J)(dn _ dn’) - Pl"(mo,I,J) (dn)

¢) If mg = mg, I(mo,n) = I'(mo,n’), and 0 < agp < apo, then PL(moLJ)(gn —
dnf) - Pr(mo,I,J)(dn)_

d) If mg = mg and either 0 ¢ I(mg,n)NI(mg,n’) orago = ap o, then PT(mo.LiJ) (gn
dn’) - PI‘(mo,I,J){dn).

e) If mg = my and either 0 < agg < ap,p or 0 = ag g < agy, then Ly S
dn') = PT(mo,L3) (gm),

f) If mo < myg, then PT(mo.ls0)(gn — gn'y = Prmo.L.J)(gn).

PT as in the last Theorem is a repeated S-M action. Applying lemma above we
define an ordering in D; using the corresponding action and call it a Steenrod-
Milnor action ordering and write S-M ordering.

g ) (&) ,
Definition 3. Let d", d* € Dy and n; = . @ip™t, m; = Y ajp™it. Here
=0 =0
[Ta:it[1ali, #0. 1) i) If mg < mf, we call d* < d™.
Bt at

i) If mo = my and one of hypotheses of last lemma is applied, we call d* < d™ .
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iii) If mg = mg and none of hypotheses of last lemma is applied, then the or-
dering is defined according to monomials PT(mo-li))gn gnd PT(moLd)gn’  Here
= (ail,g, ...,ail,g).

Next we extend the previous ideas to exterior monomials.

Lemma 3. 1) Let My, ... 5, LZ~?d" be a monomial in (E(z1, ..., zk) ® Plyy, ..., yi]) G L
and PB .= gPP°3... PP~ prlg pr*T' Tt pr | pP*T* P Then
S—— ™ -

—— v =

PB My, L272d™ = (—1)*—1=1g, odn
If 51 = k — 1, then the result follows applying
PB.=pgpe'p.  pr T prPgprtTiT pptt | pr*Tt prtiot
—— - . . - ~~

2) Let Mk;sl,_,_,s'[Lﬂ_zd" and Mk;srpm,s;,Li—zd” be monomials such that s;_; <
su_, and t is minimal with this property, then JF’BM;C;Sr1 - Li_2d”"' = 0. Here PE
is as in 1).
Proof. Let us reca]}1 that PP™ (Mk;sh_,_,s,Li_z) = Mk;sll,__,sl_l,s,_;_lLi_z for g <
k—landPPs’dZ;‘ft Z0ifandonlyif ng = s —t+1for0 <t < s +1. If

0 = s;, we apply the Bockstein operation 3. Thus PP*~*.. pp™ Mz i L§—2d” =
k—1—s;
Mis, s 508 Li_zftl. Here f;, is a polynomial in Dy.

v

0
Let PE = pP"~

- Jo—2

“..PP" . PP"T°..PP" Iterating the last formula we obtain:

v v

I Sq+1ttg+1—8g

E p—2 _ p—2
£ Mkisly---:lek d" = E ZD: Mk;31+51,---,51-1+tt—1,31+t:Lk ftl,---,tz
g=1

Here s;1; =0and 1 =k —1.

Let us suppose that s; +t; < k— . Let P2 = pP™~ 2...Pi"°ﬁ and

A= Mk;-‘il-i-tl,-...Sz—1+t1—1,31+t1 Lﬁhszfth___,tl- There are 8141 -1 S k—1-2 pOSitiOIlS

k—1—-2 (e]
...PP g3

Since there are k—I ’s in this sequence and only s;+t; —1 < k—[—2 positions, it is

obvious that P24 = 0. Now suppose that s; +t; = k — [ and one operation PP of

P2 is not applied on A. Then it will be less positions than the number of remaining

0 hol o s
@s. Inthat case PP ... PP " PP’ B Msor 10, sisiteorioncte L2 2 for.ts = 0.
The claim follows. [
Definition 4. 3) i) Mis,,..., L2 2d" < My, s, 272", if di0d™ < d 0d™ .

#) Mioy,...s L} 20" < Miey ot LE2d" , if 5, < s} and t is mazimal with this
property.

1—

to be filled by powers of y's using Steenrod operations: Ppoﬁ vis PR
S——’

Remark 2. Because of our definitions, the S-M action ordering is a total ordering.

Corollary 2. Let My, ,...s, L£_2d” € (Er.® Sk)GLk. There exists a sequence of
S-M operations PT(Mxssy.... W LEP ) such that

1= 1—

Plxod®) gpr®g  pr*~'7%  pr°g pr*~

—

1 k=2 S L q
PP BT P M, DO = 2

e
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and q is minimal with this property.
Here A € (Z/pZ)*.

Now we are ready to proceed to our main Theorem.

Theorem 6. Let f : (B, ® Sk)%* — (Ei ® Sx)GL* be a Steenrod module map
which preserves the degree such that f(dix—1) = Adik—1 for A € (Z/pZ)*. Then f.
is a lower triangular map with respect to S-M ordering and hence an isomorphism.

Proof. By hypothesis and Theorem 3, fldi,i) = Adpy for i = 0,...,k — 1 after
applying a suitable Steenrod operation.

Let d* € Dy and (d"®, ..., d™!19"D)) the increasing sequence of elements of
1|d|
degree |d"]. Let f(d") = Y a,d™¥. Claim: If d*(*) = d", then a; = Omodp for

" s bt
t < to. We use induction on t for t < ¢,. Pr@ m)f(d”) = pr@®) 3 ad®)
=1

,- ey 171
implies a; = Omodp. PT@* ™) f(gn) = pr@®) 3 a:d™® implies a; = Omodp
t=i
for i < 9. Now using Proposition 1 and the fact f(dy o) = Ad,o for A # Omodp,
we conclude that at, # Omod p. Hence f is a lower triangular map.
Because of the direct sum decomposition of the ring of invariance, it follows that
f(Mk;sl,...,s;L£_2dn) = aMk;sl,...,s; Lz_zdz then

BPP°B... f?""‘j PP gprt T prt fP"i..PPs'l F(Migs,.... s LE72d™) = Ady od
and the claim follows. JJ

Remark 3. Please note that for k = 1 it suffices to require f(My,1 L2™%) = MMy, L2732,
since B(My1LE7%) = dy o.

Corollary 3. a) Let S(Ej ® S.)%* be the subalgebra of (Er ® Si)%L* generated
by
{dk,z'}Mk,sl,...,skﬂl:-Mk,s’l,...,s;e_s,k—l} where 0 < i <k—1,0< 8 < ... < 541 <
k—1and0<s) <..<s_3<k—2 If f: S(Er®Si)CL — S(E @ S))CLx
satisfies f(dr,x—1) = Mg, k—1, then f is an isomorphism.

b) Let I[k] be the ideal of S(Er®Sk)SL* generated by {deitis Mins., .. 0 55 Mkﬁir--:sk_a:k—l}’
then the induced map f which satisfies f(dy) = Adg,0 is also an isomorphism.

Corollary b) above is a reformulation of Theorem 4.1 in [1]. We close this work
by applying last corollary in the mod —p homology of Q5°.

Let R =< QUA|I = (41,...,in),J = (é1,...,64) > be the Dyer-Lashof alge-
bra, then H.(QoS% Z/pZ) is the free commutative algebra generated by P(R) sub-
ject to the following relation QU-/) ~ (QU-I))P if I = (i;,I') , J = (0,J’) and
exc(QP7)) = 0. Here @ : R — H,(QoS%Z/pZ) is the A.-module map given
by ®(QU7)) = QU] x [—p*D)], [1] is a generator of Hy(S%Z/pL), [r] = [1]"
and [(I) is the length of I. Thus there exists an A.-module isomorphism be-
tween the generators of H.(QoS%Z/pZ) and the quotient R/QuR where QuR =
{Qeze(I,J) = 0}. It is known that R[k]* = S(E, ® Si)5L* as Steenrod al-
gebras and (R/QoR)[k]* = I[k] as Steenrod modules. Here R = @0 R[k]. Now the
following Theorem is a consequence of last corollary.

Theorem 7. [1]Let f : QFS™ — QPS> be an H-map which induces an isomor-
phism on Hap_3(Q°S>; Z/pZ). If p > 2 suppose in addition that f is a loop map
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or that
fi(d2,0)* = A(d2,0)"

for some X € (Z/pZ)*. Then f is a homotopy equivalence. Here (dp)* is the
hom-dual of the top degree Dickson generator in Ds.
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